
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221045944

Agile Process Improvement: Diagnosis and Planning to Improve Teamwork

Conference Paper in Communications in Computer and Information Science · June 2011

DOI: 10.1007/978-3-642-22206-1_15 · Source: DBLP

CITATIONS

40
READS

3,688

3 authors, including:

Some of the authors of this publication are also working on these related projects:

10xTeams View project

Autonomous agile teams View project

Torgeir Dingsøyr

Norwegian University of Science and Technology

150 PUBLICATIONS 8,782 CITATIONS

SEE PROFILE

Nils Brede Moe

SINTEF

175 PUBLICATIONS 5,245 CITATIONS

SEE PROFILE

All content following this page was uploaded by Torgeir Dingsøyr on 31 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221045944_Agile_Process_Improvement_Diagnosis_and_Planning_to_Improve_Teamwork?enrichId=rgreq-9722256bbce995717f09a6f5d9759f34-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk0NDtBUzoxMDI2OTc0ODMxMTI0NTNAMTQwMTQ5NjM5NjQ2MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221045944_Agile_Process_Improvement_Diagnosis_and_Planning_to_Improve_Teamwork?enrichId=rgreq-9722256bbce995717f09a6f5d9759f34-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk0NDtBUzoxMDI2OTc0ODMxMTI0NTNAMTQwMTQ5NjM5NjQ2MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/10xTeams?enrichId=rgreq-9722256bbce995717f09a6f5d9759f34-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk0NDtBUzoxMDI2OTc0ODMxMTI0NTNAMTQwMTQ5NjM5NjQ2MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Autonomous-agile-teams?enrichId=rgreq-9722256bbce995717f09a6f5d9759f34-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk0NDtBUzoxMDI2OTc0ODMxMTI0NTNAMTQwMTQ5NjM5NjQ2MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9722256bbce995717f09a6f5d9759f34-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk0NDtBUzoxMDI2OTc0ODMxMTI0NTNAMTQwMTQ5NjM5NjQ2MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Torgeir-Dingsoyr?enrichId=rgreq-9722256bbce995717f09a6f5d9759f34-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk0NDtBUzoxMDI2OTc0ODMxMTI0NTNAMTQwMTQ5NjM5NjQ2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Torgeir-Dingsoyr?enrichId=rgreq-9722256bbce995717f09a6f5d9759f34-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk0NDtBUzoxMDI2OTc0ODMxMTI0NTNAMTQwMTQ5NjM5NjQ2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Norwegian-University-of-Science-and-Technology2?enrichId=rgreq-9722256bbce995717f09a6f5d9759f34-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk0NDtBUzoxMDI2OTc0ODMxMTI0NTNAMTQwMTQ5NjM5NjQ2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Torgeir-Dingsoyr?enrichId=rgreq-9722256bbce995717f09a6f5d9759f34-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk0NDtBUzoxMDI2OTc0ODMxMTI0NTNAMTQwMTQ5NjM5NjQ2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nils-Moe?enrichId=rgreq-9722256bbce995717f09a6f5d9759f34-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk0NDtBUzoxMDI2OTc0ODMxMTI0NTNAMTQwMTQ5NjM5NjQ2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nils-Moe?enrichId=rgreq-9722256bbce995717f09a6f5d9759f34-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk0NDtBUzoxMDI2OTc0ODMxMTI0NTNAMTQwMTQ5NjM5NjQ2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/SINTEF?enrichId=rgreq-9722256bbce995717f09a6f5d9759f34-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk0NDtBUzoxMDI2OTc0ODMxMTI0NTNAMTQwMTQ5NjM5NjQ2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nils-Moe?enrichId=rgreq-9722256bbce995717f09a6f5d9759f34-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk0NDtBUzoxMDI2OTc0ODMxMTI0NTNAMTQwMTQ5NjM5NjQ2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Torgeir-Dingsoyr?enrichId=rgreq-9722256bbce995717f09a6f5d9759f34-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk0NDtBUzoxMDI2OTc0ODMxMTI0NTNAMTQwMTQ5NjM5NjQ2MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

R.V. O'Connor, J. Pries-Heje, and R. Messnarz (Eds.): EuroSPI 2011, CCIS 172, pp. 167–178, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Agile Process Improvement:
Diagnosis and Planning to Improve Teamwork

Mats Angermo Ringstad1, Torgeir Dingsøyr2,3, and Nils Brede Moe2

1 Acando AS, NO-0159 Oslo, Norway

2 SINTEF, NO-7465 Trondheim, Norway
3 Dept. of Computer and Information Science,

Norwegian University of Science and Technology,
NO-7491 Trondheim, Norway

Abstract. Agile software development addresses software process improvement
within teams. Process improvement, although a central concept in agile
development, is still hard to achieve. This paper argues for the use of diagnosis
and action planning to improve teamwork in agile software development.
Diagnosis and action planning is illustrated in a small and immature team and in a
large and more mature team. The action planning focused on improving shared
leadership, team orientation and learning. The improvement project provided most
new insight for the mature team.

Keywords: software process improvement, teamwork, agile software
development.

1 Introduction

Software process improvement (SPI) [1] is an important part of all approaches to
software development. In the plan-driven or traditional software development, the
process improvement focus has mainly been on explicitly defining processes that can
be standardized both within and across organizations [2]. SPI in this approach focuses
on optimization. In agile software development [3], the goal of optimization is
replaced by goals of high flexibility and responsiveness [4]. Subsequently, the agile
perspective also changes the way of doing software process improvement. According
to Salo and Abrahamsson [5] this requires new SPI mechanisms. Agile software
development addresses software process improvement and management of software
development practices within individual teams.

Given the focus on improving teamwork, there is a need for methods and
techniques describing and diagnosing such teams. The research method action
research [6] involves diagnosis and action planning, and fosters participative
improvement. This method has further been suggested as a research method that can
give results relevant to industry in addition to preserving scientific rigour. Our
research question is: How to efficiently improve teamwork in agile software
development?

The rest of this paper is organized as follows: First, we give an overview of theory
on the topic of teamwork in agile software development teams. Further, we outline

168 M.A. Ringstad, T. Dingsøyr, and N. Brede Moe

previous research on process improvement in this setting. Second, we describe the
context of research, and how diagnosis and action planning was conducted, and
continue to show results from this research during the diagnosis and action planning
phases. Third, we discuss this way of organizing process improvement on agile
software development and contrast it to previous work. Finally, we describe main
conclusions and implications for theory and practice.

1.1 Characteristics of Agile Teams

To understand process improvement in agile software development, it is important to
understand the nature of agile teams.

Agile development focuses on collaboration, informal communication and desire
an organic organizational form [7]. Such organizations are characterized by being
flexible, participative and encouraging cooperative social action.

Agile teams are usually co-located and arrange daily meetings, which means that
the team-members can see what the others are working on and the tasks they are
doing. Then team-members get immediate evidence of the progress of the work, can
adjust their own work accordingly, and know who is responsible for which tasks [8].
This makes the work predictable and easier for the team to create a common
understanding. Also the bottom-up approach of planning helps creating a common
understanding [8]. Further, the agile team is supposed to be self-managed and
empowered, which means that the team members are responsible for managing,
monitoring and improving their own processes [9].

The literature on self-organizing and self-managing teams, claims that the decision
authority and leadership needs to be shared [10, 11]. This means that leadership
should be rotated to the person with the key knowledge, skills, and abilities for the
particular issues facing the team at any given moment [12]. While the project
manager should maintain the leadership for project management duties, team
members should be allowed to lead when they possess the knowledge that needs to be
shared or utilized during different phases of the project [13]. The jointly shared
decision authority should replace the centralized decision structure where one person
makes all the decisions and the decentralized decision structure where all team
members make decisions regarding their work individually and independently of
other team members [14].

For the team to be able to self-manage, it must have a degree of redundancy [11].
The members need multiple skills so that they are able to perform (parts of) each
other’s jobs and substitute each other as circumstances demand. In this respect, socio-
technical literature is concerned with “multiskilling” [15]. Studies of self-managing
teams also show that this kind of organization requires a capacity for learning that
allows operating norms and rules to change in relation to transformations in the wider
environment [11]. Therefore, to succeed with agile development, both team and
organization needs to focus on improving the development processes.

1.2 Process Improvement

Software process improvement has its roots in general improvement philosophies like
total quality management, which has been tailored to software engineering in the

 Agile Process Improvement: Diagnosis and Planning to Improve Teamwork 169

Quality Improvement Paradigm (QIP) [16], and in efforts on standardisation like the
Software Engineering Institute’s Capability Maturity Model Integration (CMMI).

Because the field has been found to be rather dominated by the capability maturity
model (CMM) [18] - now CMMI, we refer to this model when we explain what we
mean by the “traditional approach” or “classical SPI”. CMMI focus on software
processes, standardisation and software metrics as a basis for improvement [18]. This
focus on software process is based on the premises that:

• The process of producing and evolving software products can be defined,
managed, measured, and progressively improved.

• The quality of a software product is largely governed by the quality of the
development process [19].

This approach prescribes norms for how individuals, teams or organizations should
operate, and for how processes should be standardized and improved [20].

There are several fundamental differences between traditional and agile software
development regarding SPI[5]. First, while SPI in the plan driven perspective
prescribes norms for how the individual, team and organization should operate, agile
software development address the improvement and management of software
development practices within individual teams [2]. In agile development, processes
are not products, but rather practices that evolve dynamically with the team as it
adapts to the particular circumstances [21]. Second, plan-driven methods, such as the
waterfall model, usually adopt a top-down approach for improving the software
development process [5], while the agile view has a bottom-up approach. Third, SPI
in plan-driven development often emphasizes the continuous improvement of the
organizational software process for future projects, while the principles of agile
software development focus on iterative adaption and improvement in the on-going
projects. Short development cycles provide continuous and rapid loops to iterative
learning, to enhance the process and to pilot the improvement.

When doing agile development, there are typically two meetings where the team
focuses on improving the process. 1) Daily meetings. In the daily meeting the team
members are supposed to coordinate their work and focuses on solving problems that
stop the team from working effectively. In Scrum, the Scrum-master is supposed to
facilitate this meeting and making sure impediments to the process are removed 2)
Retrospective [22]. At the end of each iteration, a retrospective is held. In this meeting
the team focuses on what was working well and what needs to be improved. Measures
are then taken.

While the conclusion of the study of Aaen et al. [23] is that there is no recognized
SPI model supporting the agile approach, we found two such frameworks. Qumer and
Henderson-Sellers [24], suggest a framework that can be used to create, modify or
tailor situation-specific agile software processes. The model includes an agility
measurement model and an agile adoption and improvement model. Salo and
Abrahamsson [5] defined an iterative improvement process for conducting SPI within
agile software development teams.

A more specific approach to improve teamwork is the use of the team radar by
Moe et al. [25]. In the next section we will describe usage of this.

170 M.A. Ringstad, T. Dingsøyr, and N. Brede Moe

2 Research Context; Diagnosis and Action Planning

The research was conducted in two teams in different companies. The teams were
selected to illustrate diverse starting points with respect to software process
improvement (key information on the teams can be found in table 1 and table 2).

Table 1. Properties of the maintenance and development team

Context “Maintenance” “Development”
Type of system Web-based Back-end of large system
Technology Primarily Java C and C++
Project size 140.000 lines of code, and several,

open-source modules
3.000.000 lines of code

Project phase Maintenance and adding new
functionality

New development

Project length Started in 2008, handed over to
customer fall of 2009.

Started in early 1990’s, still on-
going.

Team size Five: One senior and four junior
developers

Eight senior developers

Team composition Almost eight months Almost four months

The maintenance team was a small team doing maintenance and adding new

functionality to a web-based enterprise system that is used by operators all over
Norway. The team consisted of three junior developers, one service desk operator
with some system and programming knowledge, and a senior developer. The team
had worked together for almost eight months, located in one room.

The development team worked in a division of a large international corporation,
adding new functionality on a large system that was over 20 years old. The team
developed new functionality for administrating the software, server software, and
low-level modules used by a graphical client. The company had used Scrum for more
than two years. The Scrum master also worked on another development project. The
team had eight team members (including the product owner) who were all senior
developers with several years of software development experience. Three of the team
members were external, hired from consulting companies, all working for more than
two years on the system under study. The team members worked in individual offices.

Table 2. Agile practices in the two teams

Agile practice “Maintenance” “Development”
Iterative development Yes Yes
Continuous integration Yes No
Sprint planning No Yes
Sprint demo No Yes
Sprint retrospective No Yes
Daily standup No Yes
Self-managing team Yes Yes
Refactoring Yes Yes
Co-location Yes Yes
Pair-programming 2 people No

 Agile Process Improvement: Diagnosis and Planning to Improve Teamwork 171

The diagnosing means to identify the primary problems and underlying causes of
the organizations desire to change [6]. In our case, the scope was limited to improving
teamwork, and we used an instrument developed earlier, the team radar [25], with the
factors listed in table 3. The team radar is based on a literature review and experience
from case studies, which have identified the five dimensions of the instrument as
playing a pivotal role in agile teamwork.

Table 3. Factors in the team radar diagnosis instrument

Factor Description
Shared
leadership

Leadership is rotated to the person with key knowledge, there is jointly shared
decision authority.

Team orientation Priority is given to team goals more than individual goals, team members respect
other members’ behaviour.

Redundancy Members have multiple skills so that they can perform (parts of) each others tasks.
Learning The team develops shared mental models, and a capacity for learning to allow

operating norms and rules to change.
Autonomy The ability to regulate the boundary conditions of the team, the influence on

management (and other externals) on activity.

The diagnosing phase consisted of collecting a rich data material for analysis,

through observation and semi-structured interviews. The interviews lasted on average
30 minutes, and were transcribed for analysis. The first author, observed teamwork
practice in daily work, and meetings like daily meetings, iteration planning and
retrospective. Field notes were taken from the observations and integrated with the
interview material for analysis. In the maintenance team it was collected 4 interviews
and 8 observations, and in the development team 6 interviews and 7 observations. In
both teams there was a diagnosing period of two weeks each. In addition, the first
author had discussions with some of the team members about the projects and work
methods to gain a solid understanding of the surrounding environment.

The end-result of diagnosing was a score between zero and ten on selected team
radar factors (See Figure 1). The score was given on the basis of the collected answers
from all team members as well as the observed practice. In the next chapter, we show
characteristic statements that form the basis of the score. Note that the diagnosing
should not be seen as a precise instrument to diagnose teamwork, but the instrument
enables both knowledge of important aspects and the development of a language for
engaging with teamwork change and follow-up.

The action planning seeks to specify organizational actions that should relieve or
improve the primary problems identified in the diagnosis [6]. In action research, the
plan should be guided by a theoretical framework, in our case the theory of teamwork
effectiveness underlying the team radar used in the diagnosis phase. The planning was
organized as a presentation of the results of the diagnosing, with an open discussion
on whether the team recognized how teamwork was portrayed in the findings. Then,
we discussed which areas should be given priority to improve teamwork, and finally
discussed concrete actions to form an action plan.

The scope of this article is to give a better understanding of the diagnosing and
action planning phases focusing on teamwork in agile development. However, as a
result of the two phases described below, a subsequent visit to the maintenance team
showed that two of the suggested improvement actions, daily meetings and

172 M.A. Ringstad, T. Dingsøyr, and N. Brede Moe

retrospectives, were re-implemented by the team. The development team made
adjustments to their sprint planning based on the feedback. They focused on doing it
more informally, using less time, and made it voluntary to attend.

3 Diagnosing Teamwork

To diagnose teamwork in the two teams, we used the team radar instrument to
evaluate five aspects of teamwork. The total score on each factor is given in figure 1.

Fig. 1. A plot of teamwork characteristics of the two teams

The action planning phase involves a team-discussion to identify the right level for
each factor, and the factors where both the company and researchers see a potential
for improvement. Both teams chose shared leadership, team orientation and learning.
As we see from figure 1, it is not necessarily the factors with the lowest score that are
selected for action planning.

3.1 Shared Leadership

Shared leadership has a low score when the team-leader uses a “command and
control” style of management, and when few take part in the decision-making
process. A high score is given to teams which seek to engage everyone in leadership.
Shared leadership implies that team members with knowledge about a certain area
lead the discussions, and there is a shared decision-making process [25].

Maintenance team: The team members expressed that the team was well composed.
When they felt they had knowledge about the issues discussed, the team members
usually contributed to discussions and decision-making. The most important
decisions, however, were made by the senior developer and the team leader in their
weekly planning and status meetings. The reason for not involving the rest of the team
in this meeting was the heavy workload on the rest of the developers. After these
meetings, the senior developer reported back decisions, and what the team should

 Agile Process Improvement: Diagnosis and Planning to Improve Teamwork 173

prioritize. Some decisions, like how the customer wanted the support function
organized were received negatively by the team.

Another reason for why some were not participating in the shared decision-making
process was lack of knowledge. Missing knowledge resulted in some team members
not being able or interested in discussing other’s tasks. As one of the developers said,
“We have a competency hole in the system, there are some components we don’t
know… and other components that only one person knows. But we have a future goal
of having overlap regarding knowledge about the most important components.”

With respect to the project goal, the team felt that the initial goal and release-plan
was clear. However, during the first month the product had severe performance
problems, and this resulted in the customer contacting the team every day with change
orders. So instead of following the plan, the team focused on day-to-day work trying
to solve the performance issues.

Development team: The team members were pleased with the team composition, and
as one of the team members said, “we have a very strong team”.

Decisions regarding work and who was supposed to solve which tasks were usually
taken during daily stand-up meetings. Team members were free to pick whatever task
they wanted, but sometimes the observation revealed that certain tasks were always
solved by the same team members. This typically happened when one of the team-
members were seen as an expert on the task.

The team members were active in discussions on topics where they felt they had
enough knowledge to take part, this was evident during the sprint planning and the
daily stand-ups observed. The team would discuss until they decided by consensus.
We observed that the team being located in individual offices was a barrier to a shared
decision-making process. One said, “It can be hard to go into another office and ask
for opinions or help. Therefore, our best arenas for discussions and alternative
proposals are the meetings we have”.

3.2 Team Orientation

For team orientation, a low score is given when individual goals are more important
than the team goals, and where team members do not respect other team member’s
decisions. The highest score is where the team goals are the most important, and when
team members respect each other’s decisions [25].

Maintenance team: Alternative proposals were not common for several reasons; the
senior would often make the decisions for the team, specialization within selected
components resulted in developers not discussing issues with “their” components with
others, and because of a high workload the team never prioritized discussing
alternative proposals. Missing a shared decision-making process resulted in individual
goals becoming more important than team goals. During observation, we saw little
communication between the team members in the team room, except when
coordinating who should do what, and reporting status. As one of the junior
developers said; “We have not had much communication lately since everyone has
been so busy and overworked…. the task-assigning communication which happens
quite often, is disturbing. “ This situation clearly hindered team-orientation.

174 M.A. Ringstad, T. Dingsøyr, and N. Brede Moe

The team members did not show an interest in other team members work unless it
was affecting their own work, and subsequently it was difficult to strengthen the
importance of the team-goals. “The only person here who is interested in what the
others are doing, is the senior”, said one of the junior developers.

Development team: Team orientation was stronger in this team, and it was clear that
alternative proposal from other team-members when planning work was appreciated.
“We are very open when it comes to suggest alternative solutions”, said one
developer. A good example of shared leadership was during an observed sprint demo
where one of the team members held the whole presentation, not the Scrum master.
“We have a very professional orientation to how we work with the product and the
projects”, one of the team members said, pointing to the fact that they would usually
have thorough discussions in the team before making decisions.

While team commitment was strong, the team members did not have a clear
conception of the long-term vision of the project, even though they had clear goals for
each sprint. The product owner, who got the full overview of the system,
acknowledged this, realizing that he was not good enough at sharing the long-term
goals with the team.

Some of the team members explained that they felt ownership to the team-plans,
while others said they had ownership to the system being developed but not the
project. This decreased the team-orientation.

3.3 Learning

The learning factor has the lowest score in situations where there are no feedback
mechanisms. The highest score is given when there is continuous improvement of
work methods based on feedback [25].

Maintenance team: Because the team stopped holding retrospectives, there were no
formal arenas for learning and improving. The team members did not see the need for
a common improvement and feedback meeting, since this meeting had not earlier
resulted in an improved process. The team continued work in the same manner every
day. The only feedback given to the team was from the weekly meetings where only
the senior developer and the team leader participated.

Development team: The team had several arenas for giving feedback on other’s work.
The most appreciated one was the sprint retrospective. In addition, they had daily
stand-up meetings and additional design meetings.

The team discussed process related problems in the sprint retrospective, which
made it possible to adjust the Scrum process to make it better fit the organization, and
the team. However, several of the interviewees said they were missing good
discussions on how to improve the teamwork. Also we found that some process
problems were not reported in the retrospectives. One example was problems related
to the planning meeting. This meeting spanned over two days, and every user story
was discussed in detail. Usually everyone participated in the discussions, however
sometimes two or three team members could discuss a user story for a long period of
time, while the others were only listening. Then team-members felt excluded from
participating actively in the meeting, and subsequently the meeting was seen as less

 Agile Process Improvement: Diagnosis and Planning to Improve Teamwork 175

productive. “I am aware that our sprint planning is often ineffective, but I’m not sure
how we can improve that”, the product owner said. This problem was not reported or
discussed in the retrospective.

4 Action Planning: Measures to Improve Teamwork

To improve teamwork in the two teams, we presented the results of the diagnosis
phase, and discussed priority on teamwork factors together with the teams. As a result
concrete measures to be taken to improve the development processes and the
teamwork were suggested.

For the maintenance team we observed challenges related to shared leadership,
team orientation, and learning. As for leadership, the team was dominated by junior
developers, there was little involvement of the team in leadership and little process in
place. The team was heavily specialized, with team members working on independent
modules, which again lowered team orientation. Finally, the team had no arenas for
learning except for being in the same room, but observation showed little discussion
and feedback on the actual work tasks the team members were involved in.

In a workshop, we presented the scores, problems and consequences to the team.
The team decided to reintroduce important agile practices they had stopped doing. In
prioritized order:

• Sprint retrospective to improve learning. Team members would be able to give
feedback and improve both the development process as well as the product.

• Daily stand-up meetings to improve coordination of tasks, team communicating,
and solve problems daily. The meeting was expected to have an effect on shared
leadership, team orientation and learning.

• Code review to improve software quality, learning and increase redundancy.

The development team got higher scores on all factors compared to the maintenance
team. The team prioritized to improve the problems with the highest potential for the
team: inefficient sprint planning, variable ownership to project goals, and not solving
process related problems in the retrospective. The following actions were suggested:

• Open space1 sprint planning, to conduct sprint planning more efficiently. The
sprint planning meetings in the team were dominated by specialists and long
lasting. Using the open space process, the team members would suggest topics to
discuss and then several discussions could happen in parallel in the same room.
Team members are encouraged to walk between discussions. This action was
expected to improve shared leadership and team orientation.

• Pair programming to improve team orientation. Making people to closely together
constantly giving feedback could also improve shared decision-making and
improve learning.

• Collocating the team in the same room, would improve communication and
oversight, and improving team orientation.

1 www.openspaceworld.org

176 M.A. Ringstad, T. Dingsøyr, and N. Brede Moe

5 Discussion

Now we return to our research question, “how to efficiently improve teamwork in
agile software development?” We have shown results from using diagnosis with the
team radar and action planning in a small and immature team and in a large and more
mature team.

Both the teams perceived the diagnosing and the outcome as something they
learned from, because it illuminated issues they had seen individually but not
discussed within the team. It is not enough to do retrospectives if the team is not able
to discuss the cause of the problems they are experiencing.

The cost associated with the improvement method reported in this article was
perceived as low, with a short data collection period (interviews and observations),
and little disturbance of the team. The feedback meeting where the team got concrete
feedback and had the ability to discuss software process improvement measures, was
the meeting taking most time. The teams stated that the radar produced a realistic and
“spot on” analysis of the situation in the team. The method presented here, helped the
companies improve, however, to use the team radar as a diagnosis instrument was not
without challenges. Setting a score on the team radar was difficult, because the score
is both subjective and imprecise. However, the main motivation for giving a score is
to get a basis for discussion with the team. Also the score is discussed and verified by
the team before an improvement program is suggested. Working with an instrument
like the team radar should be seen as a start of a process, not as an end-mean in itself.

A question is then whether it would make more sense to have a more open
approach to software process improvement, for example by basing improvement
initiatives on the retrospective. There are two main differences in the approach
reported in this article and an approach relying on retrospectives. First when using an
external person, he or she gets more insight into the work of the team through
interviews and observation. This might discover process related problems not reported
in the retrospective, and give the team a better understanding of the problems. This is
important to suggest the right measures to be taken. Second, since the team radar is
based on the factors necessary for achieving self-management, the instrument gives
more precision in identifying problems than what typically is identified in a
retrospective. Redundancy for example, is a factor which is often mixed with
learning, and a team might see problems but not relate them to root causes such as a
lack of team orientation.

In the development team, as a larger and more mature team already experienced
with process improvement, the diagnosis using a team radar led to more precise
recommendations than they had experienced previously. In the maintenance team, one
could argue that the results only confirmed what the team already knew. However it
was not until the results from the team radar was discussed, that they were able
improve their processes.

6 Conclusion and Further Work

This study indicates that process improvement, although a central concept in agile
development is still hard to achieve. This study indicates that diagnosis using a
specific instrument, the team radar, has an effect on action planning in teams.

 Agile Process Improvement: Diagnosis and Planning to Improve Teamwork 177

This study has the following implications: The implication for theory is that there
are positive indications that the team radar instrument identifies relevant challenges
for agile software development teams. This form of diagnosing and action planning
can be valuable in action research, and the diagnosis instrument can also be of use in
case studies and ethnographic studies of teams.

The main implication for practice is that this study with two teams reveals that
process improvement does not happen by itself even in agile methods, there needs to
be effort invested to actively experiment with solutions.

Acknowledgements. We are grateful to participants in the two teams from the
companies, who willingly shared their experience on teamwork and were willing to
try out new practices. This project has been partially supported by the Research
Council of Norway in the TeamIT project, through grant 193236/I40.

References

1. Aaen, I., Arent, J., Mathiassen, L., Ngwenyama, O.: A Conceptual MAP of Software
Process Improvement. Scandinavian Journal of Information Systems 13, 81–101 (2001)

2. Lycett, M., Macredie, R.D., Patel, C., Paul, R.J.: Migrating agile methods to standardized
development practice. Computer 36, 79–85 (2003)

3. Dybå, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A Systematic
Review. Information and Software Technology 50, 833–859 (2008)

4. Nerur, S., Balijepally, V.: Theoretical Reflections on Agile Development Methodologies.
Communications of the ACM 50, 79–83 (2007)

5. Salo, O., Abrahamsson, P.: An iterative improvement process for agile software
development. Software Process: Improvement and Practice 12, 81–100 (2007)

6. Baskerville, R., Wood-Harper, A.T.: A critical perspective on action research as a method
for information systems research. Journal of Information Technology 11, 235–246 (1996)

7. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile methodologies.
Communications of the ACM 48, 72–78 (2005)

8. Okhuysen, G.A., Bechky, B.A.: Coordination in Organizations: An Integrative
Perspective. Academy of Management Annals 3, 463–502 (2009)

9. Trist, E.: The evolution of socio-technical systems: a conceptual framework and an action
research program, Ontario Quality of Working Life Centre, Toronto, Ontario (1981)

10. Kirkman, B.L., Rosen, B.: Beyond self-management: Antecedents and consequences of
team empowerment. Academy of Management Journal 42, 58–74 (1999)

11. Morgan, G.: Images of Organizations. SAGE publications, Thousand Oaks (2006)
12. Pearce, C.L.: The future of leadership: Combining vertical and shared leadership to

transform knowledge work. Academy of Management Executive 18, 47–57 (2004)
13. Hewitt, B., Walz, D.: Using Shared Leadership to Foster Knowledge Sharing in

Information Systems Development Projects. In: Proceedings of the 38th Annual Hawaii
International Conference on HICSS 2005 (2005)

14. Hoegl, M., Parboteeah, P.: Autonomy and teamwork in innovative projects. Human
Resource Management 45, 67 (2006)

15. Emery, F., Thorsrud, E.: Democracy at work: the report of the Norwegian industrial
democracy program. Martinus Nijhoff Social Sciences Division, Leiden (1976)

16. Basili, V.R.: Software development: a paradigm for the future. Presented at Computer
Software and Applications Conference, COMPSAC 1989 (1989)

178 M.A. Ringstad, T. Dingsøyr, and N. Brede Moe

17. SEI, Capability Maturity Model ® Integration (CMMI) (2002)
18. Hansen, B., Rose, J., Tjørnehøj, G.: Prescription, description, reflection: the shape of the

software process improvement field. International Journal of Information Management 24,
457–472 (2004)

19. Humphrey, W.S.: Managing the software process. Addison-Wesley, Reading (1989)
20. Hansen, B., Rose, J., Tjornehoj, G.: Prescription, description, reflection: the shape of the

software process improvement field. International Journal of Information Management 24,
457–472 (2004)

21. Aaen, I.: Essence: Facilitating Agile Innovation. In: XP 2008, pp. 1–10. Springer,
Heidelberg (2008)

22. Dingsøyr, T.: Postmortem reviews: Purpose and Approaches in Software Engineering.
Information and Software Technology 47, 293–303 (2005)

23. Aaen, I., Börjesson, A., Mathiassen, L.: Navigating Software Process Improvement
Projects. In: Baskerville, R., Mathiassen, L., Pries-Heje, J., DeGross, J. (eds.) Business
Agility and Information Technology Diffusion. IFIP International Federation for
Information Processing, vol. 180, pp. 53–71. Springer, Boston (2005)

24. Qumer, A., Henderson-Sellers, B.: A framework to support the evaluation, adoption and
improvement of agile methods in practice. Journal of Systems and Software 81, 1899–
1919 (2008)

25. Moe, N.B., Dingsøyr, T., Røyrvik, E.: Putting Agile Teamwork to the Test – A
Preliminary Instrument for Empirically Assessing and Improving Agile Software
Development. Presented at XP 2009, Pula, Italy (2009)

View publication stats

https://www.researchgate.net/publication/221045944

	Agile Process Improvement: Diagnosis and Planning to Improve Teamwork
	Introduction
	Characteristics of Agile Teams
	Process Improvement

	Research Context; Diagnosis and Action Planning
	Diagnosing Teamwork
	Shared Leadership
	Team Orientation
	Learning

	Action Planning: Measures to Improve Teamwork
	Discussion
	Conclusion and Further Work
	References

